
Linux Notes 1

These notes are about basic commands, navigation,
text editing, and environment variables

Definitely do the things in Blue Text yourself, and
anything else you want to try.

Basic commands

• Linux commands are what you type at the command line in your
terminal window to accomplish things. They are usually
short, cryptic combinations of lower-case letters, followed
by optional arguments strung out after a dash (-). You hit
Return to get them to execute.

• For example: “ls” will give a listing to your screen of the
contents of the current working directory.

• To find out more (often too much!) about a linux command
type “man [command]”. ”man” is short for manual.

• Throughout this course, when I use “quotes” you don’t type
them on your screen unless I specifically make an exception.
Things in [square brackets] are where you substitute some
suitable content – without the square brackets.

ls

• ls gives a directory listing
• To get more information from ls try:
• ls –lah
• Here I have added three useful options:
• The “l” gives a longer, more informative listing for
each item in the directory.
• The “a” means that it also shows the hidden files in
your directory – the ones that start with “.” like
.bashrc or .bash_profile in your home directory.
• The “h” means “human readable” and it causes the file
sizes to be reported in easier to understand units like
“K” for kilobytes.

ls
• here is a typical result on my mac:
Parkers-MacBook-Pro:LiveOcean_roms pm7$ ls -lah
total 32
drwxr-xr-x 9 pm7 staff 288B May 13 2019 .
drwx------@ 57 pm7 staff 1.8K Feb 13 11:17 ..
-rw-r--r--@ 1 pm7 staff 12K May 13 2019 .DS_Store
drwxr-xr-x 16 pm7 staff 512B Apr 20 2017 LO_ROMS
drwxr-xr-x 13 pm7 staff 416B Aug 6 2017 ROMS
drwxr-xr-x 13 pm7 staff 416B Jul 6 2017 ROMS_820
drwxr-xr-x 12 pm7 staff 384B May 28 2015 ROMS_WOAC
drwxr-xr-x 22 pm7 staff 704B Jan 13 09:16 makefiles
drwxr-xr-x 7 pm7 staff 224B Mar 23 15:58 output
• The mysterious code at the left is about permissions. If the first letter
is “d” that means it is a directory. The following “rwx” means that the
user (me) can Read, Write, and Execute the file. The “rwx” is repeated
three times for user/group/anyone. When you write your own shell scripts
later you will want to make sure they have an “x” so they can be executed.

Directory and file names, cd
• In linux it is easier, and traditional, to avoid spaces in naming things like files and
directories.

• So it would be preferred to call a new directory "my_code" instead of "My Code"

• But you can still work with spaces by using quotes, for example to "cd" (change
directory):

• cd "My Code"

• or even in a full path:

• cd /Users/pm7/Documents/"My EndNote Library.Data"

• TIP: you can also use "\ " to mean a space. The backslash (\) is a standard symbol for
"the next thing is to be treated in a special way."

• CAUTION: if you cut and paste commands that have quotes, like the ones above, they often
fail in linux because they include "smart quotes". You have to replace these by hand.

• Use "pwd" (print working directory) to find out where you are currently.

• Use "cd ~" to go to your "home" directory.

• "." is shorthand for the current directory

• ".." is shorthand for one directory up (the parent directory)

Environment, cp
• Use “cd ~” to go to your “home” directory. This
is where login and environment information is
kept.
• If your setup is like mine, you will find a file
called “.bash_profile”. On your account on the
remote linux machine it may be called ”.bashrc”
• You can edit this (!) to add shortcuts to your
command line workflow.
• First make a copy in case it all goes bad:
• cp .bash_profile .bash_profile_ORIG
• “cp” is short for “copy” and you just follow it by
two names, one that exists and the new one. If
the new one exists it will just overwrite it, so
be careful.

Make an alias, source
• If you have a text editor like Atom or Visual Studio Code, open up your .bash_profile
and an add a line (above or below whatever is there – it does not matter):

• alias ipy='ipython --pylab'

• NOTE: if you are using VS Code it will not show hidden files like .bash_profile when you
are looking for things in a folder. To get them to show you type "SHIFT+COMMAND+." (all
three at once). This is on a mac – maybe different on a Windows machine.

• NOTE: the spaces are important, in particular no spaces around the "="

• You can add comment lines by starting them with "# "

• After you save the edited file, go to your terminal window in ~ and type "ipy"

• It should tell you "command not found"

• Now type "source .bash_profile" which basically re-runs the commands in that file. Now
when you type "ipy" it should launch the ipython command line environment.

• You can do this for any common shell command. I use it a lot for getting to directories
or remote machines I use commonly, for example I have:

• alias cdpm='cd $HOME/Documents'

• alias fjo='ssh parker@fjord.ocean.washington.edu'

Environment variables, env
• You may have noticed the $HOME in the "cdpm" alias on the
last page. That is an environment variable that is the path
to your home directory (~ is shorthand for the same place).

• You can see what that path is by typing “echo $HOME” or by
doing “cd ~” or “cd $HOME” followed by “pwd”.

• You can see all the defined environment variables by typing
“env” (try it)

• You’ll notice that the names in the listing don’t have the
“$”, e.g. in mine it has the entry: “USER=pm7”

• You can make your own variables with commands like:
• “junk=77” (note no spaces, and no need for upper case)
• then typing “echo $junk” returns 77
• $junk will be gone the next time you open the command window
(test this yourself).

Environment variables cont.
• To summarize: you can define a variable in bash
with a command like "name=value" and then you
access it using $name.
• I use such things to simplify commands in my
.bash_profile:

navigation
LOp=$HOME'/Documents'
alias cdlo='cd $LOp/LiveOcean'
alias cdloo='cd $LOp/LiveOcean_output'

cat, mkdir, mv, rm

• "cat [filename]" is good for displaying the contents of a text
file (like .bash_profile) to your screen. You can also use "more"
or "less".

• "head –n 5 [filename]" shows the first 5 lines of a file
• "tail –n 15 [filename]" shows the last 15 lines of a file
• "mkdir" is what you use to make a new directory
• "mv" is used to move a file from one place to another
• "rm" is used to remove files. Directories have to be empty before
you can remove them.

• If you use "rm –rf [directory name]" it will force "f" the removal
of even non-empty directories, and do so recursively "r" meaning
for all sub-directories. This is a super-handy command for
cleaning up, but BE CAREFUL!!! It removes things permanently,
instead of putting them in the Trash on your Desktop.

mv, man
• A few tips on using mv...
• To move a file to a directory you would do:
• mv [filename] [path to directory]
• To rename it in the current directory you do:
• mv [filename] [new filename]
• This is a good point to try looking at the output of a
man page. Type "man mv"...
• The results can be intimidating and confusing at first.
You use the spacebar to page down, and type "q" to
escape back to the shell.
• Try a few experiments: make a directory with some files
in it. Make another empty directory. Move one of the
files to the new directory. Move all of the files to a
new directory that does not exist.

Text files and suffixes, >

• One quick way to make a text file in linux is to use
"redirection" which is the ">" symbol. For example:
• env > env.txt
• takes the output of typing env and instead of sending
it to your screen it sends it to (redirects it to) a
new text file called env.txt (or any name you choose).
• Note about suffixes: on laptops we are used to things
like .docx and so on being very important. In linux
suffixes are only for your convenience - so I use .txt
above to tell myself that this is an ordinary text
file. Other common suffixes I use are .py for python
code and .sh for bash shell scripts.

history

• To see a listing of the commands you have
issued recently type "history". The last few
lines of what I get are:

497 say words
498 nc towel.blinkenlights.nl 23
499 man nc
500 man ls
501 history

• Then if you type, e.g. "!500" it will rerun
that command.

Resources

• https://files.fosswire.com/2007/08/fwunixref.pdf

• https://btiplantbioinfocourse.files.wordpress.com/2014/02/unix_command_she
et_2014.pdf

• More favorites from the class?

https://files.fosswire.com/2007/08/fwunixref.pdf
https://btiplantbioinfocourse.files.wordpress.com/2014/02/unix_command_sheet_2014.pdf

